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The flower is blooming. 

The white lion opens its mouth and roars.Snowflakes falling, Christmas tree is shining.

This man gives a thumbs-up. 
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Camera zooms out. Scenery of the castle on a cliff by the ocean. 
Camera Motion Intensity:2

Camera zooms out. Scenery of the castle on a cliff by the ocean. 
Camera Motion Intensity:8

Reference Image Reference ImageA ship is moving on the sea. Object Motion Intensity:2 A ship is moving on the sea. Object Motion Intensity:8

Figure 1. Samples generated by MotionStone. Our model achieves accurate motion instruction following (rows-1 and rows-2), and is
controllable, easily adapting to specified object motion intensities (row-3) and camera motion intensities (row-4).

Abstract

The image-to-video (I2V) generation is conditioned on
the static image, which has been enhanced recently by the
motion intensity as an additional control signal. These
motion-aware models are appealing to generate diverse
motion patterns, yet there lacks a reliable motion estimator
for training such models on large-scale video set in the
wild. Traditional metrics, e.g., SSIM or optical flow, are
hard to generalize to arbitrary videos, while, it is very tough
for human annotators to label the abstract motion intensity
neither. Furthermore, the motion intensity shall reveal
both local object motion and global camera movement,

*Work done during internship at Ant Group. †Project lead.
‡Corresponding author.

which has not been studied before. This paper addresses
the challenge with a new motion estimator, capable of
measuring the decoupled motion intensities of objects and
cameras in video. We leverage the contrastive learning
on randomly paired videos and distinguish the video with
greater motion intensity. Such a paradigm is friendly
for annotation and easy to scale up to achieve stable
performance on motion estimation. We then present a
new I2V model, named MotionStone, developed with
the decoupled motion estimator. Experimental results
demonstrate the stability of the proposed motion estimator
and the state-of-the-art performance of MotionStone on
I2V generation. These advantages warrant the decoupled
motion estimator to serve as a general plug-in enhancer for
both data processing and video generation training.
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1. Introduction
Image-to-Video (I2V) generation animates static images
into fun creative videos which has attracted broad interests
in research and industry [16, 18, 34, 44, 51, 54]. The
key to achieving high-quality I2V results lies in synthesiz-
ing sufficient temporal dynamics, which requires effective
frame-to-frame motion modeling. Some methods [5, 12,
24, 29, 30, 42, 47, 55] introduce additional conditions into
diffusion models, e.g., optical flow, motion trajectories, or
depth maps, to better capture motion dynamics. However,
these methods require complex and hard-to-obtain control
conditions as inputs, and the training data must be metic-
ulously preprocessed for model training, preventing them
from reliably generalizing to videos in the wild.

Recently, several I2V works [8, 11, 26] explore text-
based motion control and introduce motion intensity as the
essential control signal on motion patterns. For example,
LivePhoto [8] and Cinemo [26] leverage text prompts to
direct motion and integrate SSIM [46] to modulate motion
intensity. Although these motion-aware models demon-
strate improved controllability in motion and enhanced gen-
eration quality, the estimation of motion intensity remains
inadequate due to the discrepancy between their motion
modeling strategy and human motion perception. As a
result, the diffusion model is unable to accurately capture
the real motion intensity in a video clip during training,
which negatively impacts the convergence process.

Furthermore, as shown in Fig. 2, motion patterns in
real-world videos could be very complicated including both
object motion and camera movement. Applying traditional
motion extractors, which are not specifically designed for
video motion modeling, to estimate motion across entire
videos, is unattainable to distinguish between different
types of motion, thereby limiting precise control over
motion dynamics. A straightforward way is to learn a
motion estimator to predict human perception of object and
camera motion intensity in videos.

In this paper, we introduce MotionStone, a general
I2V diffusion model to enable decoupled modeling and
control of video motion. The core of MotionStone
is the independent motion estimator, comprising a motion
modeling backbone and dual heads to disentangle object
and camera motion. Specifically, we first propose a
video motion annotation method, which requires human
annotators to distinguish the relative motion intensity of
objects and cameras in randomly selected video pairs.
Then the proposed motion estimator is trained using a
contrastive learning strategy with these relatively annotated
video pairs. For the structure of the motion estimator, we
employ a learnable TAdaConv [19] as the motion feature
extractor, integrating the pairwise ranking loss and MLP-
based motion heads to facilitate motion disentanglement.

During the training phase of the diffusion model, we

C
am
er
a 

M
ot

io
n 

O
bj
ec
t M

ot
io

n 

Figure 2. Illustration of the motion decoupling. Decoupling
these two types of motion helps the diffusion model learn specific
motion patterns, thereby improving the dynamics and controllabil-
ity of the generated video.

freeze the pre-trained motion estimator and use its predic-
tion result as an additional input for noise prediction at each
step. In particular, we design a decoupled motion score
injection method that allows the model to discern whether
each motion intensity control signal originates from the
camera or the object, thus achieving decoupled motion
modeling in training. Extensive quantitative and qualitative
results demonstrate that MotionStone achieves state-of-
the-art performance in text-guided motion control through
its decoupled motion intensity guidance and conditional
injection, as shown in Fig. 1. MotionStone animates
diverse real-world images across various domains, skillfully
decomposing motion into object and camera components.
With its decoupled motion guidance, MotionStone al-
lows users to customize motion intensity, enabling a wide
range of motion effects.

2. Related Work
Image Animation. Image animation aims to generate
controllable videos using a static image as content condi-
tioning. Early methods [10, 38] focus on modeling motion
patterns for specific object types, limiting their ability to
generalize motion control to other scenarios. To capture
realistic motion from real videos, some methods [9, 35,
37, 44, 56, 57] use a set of videos with various motion
patterns as references, transferring these motion patterns
to images within the same category. Other approaches
model motion for specific scenes, such as fluids [28, 31] and
human hair [48]. Additionally, some methods [6, 18, 40, 43]
convert the human pose into additional conditions, such as
depth maps or skeletal points, to guide video generation.
Although these methods achieve continuous motion control
within a specific domain, their applicability remains limited
due to the restricted training data and the frequent need for
side control signals. Subsequently, some generalizable I2V
models [2, 53] typically train on video data based on pre-
trained I2V models. However, the generated videos often
exhibit limited motion diversity due to structural limitations
and conditions [8].
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Figure 3. The framework of MotionStone. The first frame of the video serves as the conditioning image, while object and camera
motion intensities (ranging from 1 to 10) are predicted by the motion estimator and can be customized by users during inference. At
the top, the object and camera motion intensities predicted by the motion estimator are processed through an MLP respectively to obtain
corresponding embeddings, which are then concatenated along the channel dimension to form the Decoupled Motion Embedding. This
embedding is added to the time embedding and injected into the Diffusion Transformer to generate videos.

Recent methods [8, 11, 26, 54] explore using text as
a condition to control motion in video. For instance,
PIA [54] attempts to animate specific domain images using
text descriptions of motion. Other methods [8, 11, 26]
further incorporate coarse-grained motion intensity esti-
mates to generate videos with varying intensities or speeds.
However, these approaches lack alignment with human
perception, leading to suboptimal results in motion control.
In this work, we propose a generalizable framework that
uses flexible text as a guiding condition, enabling precise
motion modeling in generated videos.
Text-to-Video Generation. The text-to-video (T2V) mod-
els have made significant progress along the emerging
diffusion models [15, 17, 36, 39]. Early T2V models [3,
16, 27, 45, 47] harness the strong priors of existing text-
to-image (T2I) models, adapting temporal modules trained
on video data to enable video generation. For instance,
Tune-A-Video [47] fine-tunes a pretrained T2I diffusion
model with a temporal attention mechanism in a one-
shot manner. AnimateDiff [16] introduces a plug-and-
play motion module that integrates seamlessly into existing
personalized T2I diffusion models to animate images in a
similar way. However, these models rely on U-Net-based
denoising networks, which have limited their performance.

Recently, some works [7, 14, 27, 52] have shifted the
denoising network from U-Net to Diffusion Transformer,
inspired by DiT [32]. Video generation models with
Transformers have strong spatiotemporal modeling abili-
ties. Powered by large-scale training data, they can generate
videos with rich content and motion. CogVideoX [52]
utilizes a 3D Variational Autoencoder and an expert Trans-
former with adaptive LayerNorm to produce coherent,
extended-duration videos from text prompts. However,
while these methods allow text to control content, they limit
the fine-grained control over object and camera movement.

3. Method

Our method is built on a pretrained video diffusion
model [52], consisting primarily of a diffusion trans-
former [32] and a 3D VAE [52]. We first give a brief
introduction to the process of the video diffusion model
in Sec. 3.1, followed by presenting the overall pipeline in
Sec. 3.2. In Sec. 3.3, we provide a detailed explanation of
motion intensity estimation, and in Sec. 3.4, we propose a
new scheme for injecting motion intensity.

3.1. Preliminaries

Diffusion Transformer demonstrates superior capabilities of
spatiotemporal modeling in video generation compared to
U-Net architecture. In this work, we select CogVideoX [52]
as the pre-trained model. Given a video x ∈ RF×H×W×3,
the 3D VAE encoder E compresses video frames along the
spatiotemporal dimensions to obtain a latent representation
z0 = E(x), where z0 ∈ R(

F−1
4 +1)×H′×W ′×C . After that,

the forward diffusion and reverse denoising processes are
performed in the latent space. During the forward phase,
noise is incrementally added to the latent vector z0 over a
total of T steps. At each time step t, the diffusion process is
defined as follows:

zt =
√
αtz0 +

√
1− αtϵ, (1)

where ϵ ∈ N (0, I), and αt is the cumulative products of
noise coefficient αt at each time step. For the backward
pass, a diffusion model performs iterative noise reduction,
guided by the text prompt ctext and time step t. The
objective of this stage can be formulated as:

L = EE(x),ctext,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t, ctext)∥22

]
. (2)
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3.2. Overall Pipeline
The framework of our model is shown in Figure 3. The
model takes a reference image, a text prompt, and two dis-
entangled motion intensities predicted by a motion intensity
estimator as inputs. During training, we first extract the first
frame from the input video to use as a conditioning refer-
ence for generation. The trained motion intensity estimator
then predicts the camera and object motion intensities of
the input video, providing two motion scores that guide the
video generation process. During inference, users can spec-
ify the desired motion intensities for the object and camera,
if available, to customize the generated video. The model
takes a latent z ∈ RB×T×C×H×W and concatenates the
first frame latent of the video along the channel dimension
to guide video generation. For frames beyond the first in the
video sequence, zeros are padded in place. Subsequently,
the model uses a text encoder to extract the features of the
text prompt, which are then concatenated with the latent
and fed into the diffusion transformer. Meanwhile, the
two motion intensities predicted by the motion estimator
are mapped to high-dimensional embeddings by MLP, then
concatenated and added to the time step t. This combined
representation serves as a modulation condition for the
vision and text features, enabling fine-grained control over
the motion of video generation.

3.3. Motion Intensity Estimation
To achieve precise control over motion intensity, we train
an independent motion estimator to predict the intensity of
object and camera motion within a video. We provide a
detailed explanation covering three aspects: the construc-
tion of training data, the design of the motion estimator
architecture, and the training configuration.
Training Data Construction. Training a motion estima-
tor to accurately predict video motion typically requires
labeling object and camera motion intensities for each
video—a highly challenging task. Due to the complexity
of video motion, assigning specific scores to object and
camera movement is impractical, as people find it difficult
to consistently rate motion intensities. To address this
issue, we develop a simple and intuitive labeling approach.
Rather than assigning precise scores, annotators compare
video pairs, indicating which video exhibits stronger object
or camera motion. This method largely streamlines the
annotation process. We construct 5,000 video pairs, with
annotators labeling the relative motion intensities for object
and camera motion within each pair.
Motion Estimator. The motion estimator needs to simul-
taneously predict both object motion and camera motion
for video. Therefore, when designing the structure of
the motion estimator, the first requirement is a backbone
that can effectively represent the motion in the video.
Based on this motion representation, two heads (an object

motion head and a camera motion head) are introduced
to map the representation to two corresponding motion
intensities. Given that our video generation network is
quite large, it is crucial to limit the overall parameters and
computational cost of the additional motion estimator. To
achieve this goal, we use TAda [19] as the backbone for
video motion representation. Given an input video x, the
motion representation of the video can be obtained through
spatiotemporal modeling with TAdaConv. This process can
be formulated by the following equation:

M = TAdaConv(x;ϕ), (3)

where M represents the extracted motion representation
features and ϕ represents the parameters of TAdaConv.
Afterward, we apply global average pooling over the spa-
tiotemporal dimensions on the extracted features, followed
by two separate heads: one for object motion scoring
and another for camera motion scoring. Both heads are
composed of MLPs. Each head predicts the respective
scores for object and camera motion in the video. This
process can be formulated as follows:

sobject, camera = MLPobject,camera(GAP(M); θ), (4)

where sobject and scamera represent the object motion score
and camera motion score, respectively, θ represents the
parameters of the object or camera motion prediction head
and GAP denotes global average pooling.
Training Configuration. Since the training dataset only
contains relative motion comparison labels in the video
pair, we design a contrastive learning approach to train the
motion intensity estimator. This method helps the motion
intensity estimator predict the relative magnitude of object
and camera motion in video pairs. We train the motion
estimator using the ranking loss [25].

Specifically, given a video x as input to the motion
estimator, we obtain object motion score sobject and camera
motion score scamera through Eq. 3 and Eq. 4. Since our goal
is to learn the relative rank in the video pair, we introduce
the pairwise ranking loss to train the motion estimator:

Lo = max
(
0, sobject

2 − sobject
1

)
, (5)

Lc = max
(
0, scamera

2 − scamera
1

)
, (6)

here we assume that the object and camera motion of x1 is
higher than x2.

However, training only with the ranking loss, the pre-
dicted scores from the motion estimator tend to cluster
closely together. Such an estimator can distinguish relative
motion between videos but is not practically usable as it
lacks sufficient differentiation. Ideally, the predicted score
should reflect clear distinctions (ranging from 1 to 10).

To make the motion estimator practically applicable,
we randomly sample a subset of videos from our training
dataset. Using the tracking method [49] combined with
object masks extracted by [50], we calculate tracking
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Example 1 “A vast, luminous spiral galaxy with a warm yellow core and
colorful arms slowly rotates against a dark backdrop, with stars
scattered throughout, as the camera pushes in towards the bright
core. ”

“A fair-skinned, blonde person sits slightly to the left, while
another individual with a darker complexion, holding a small
black makeup pencil, carefully applies makeup around their eyes.
The seated person remains still throughout the process.”

Example 2

Example 3 Example 4“A person, wearing a red shirt and a helmet, rides a mountain
bike along a rocky path. The terrain is rugged, with large rock
formations and a dirt path.”

“A giraffe with a light brown and white patterned coat stands in a
lush environment, moving its head from a frontal view to the
right and slightly lowering its head as it eats leaves from nearby
plants. ”
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Figure 4. Qualitative comparison with other methods. We compare our MotionStone with I2VGEN-XL [53], SVD [2],
AnimateAnything [11] and CogvideoX [52]. MotionStone demonstrates superior alignment with text and image inputs compared
to other methods (Example 2 and Example 4). Additionally, as shown in Example 1, it highlights the ability of camera controlling, while
other methods tend to remain static frames. Example 3 showcases the capacity of MotionStone to control object movements, whereas
other methods either remain static frames or produce unrealistic scenes that defy physical principles.

trajectories for the object and camera motion in each video.
From these trajectories, we can approximate the average
motion intensity of the object yobject and camera ycamera.
We use them as pseudo-labels of video motion to conduct
regression training for the motion estimator. The regression
loss of the motion estimator training can be formulated as:

Lr = ∥sobject − yobject∥22 + ∥scamera − ycamera∥22. (7)

We then jointly train the estimator using both the ranking

loss and regression loss with pseudo-labels derived from the
tracking results. The overall training loss can be defined:

Ltotal = Lo + Lc + λLr, (8)

where λ denotes the balancing parameter.

3.4. Motion Condition Injection Design
After training the motion estimator, it is crucial to inject
the predicted motion intensity values into the backbone
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Table 1. Quantitative comparison with state-of-the-art methods.
We use Background Consistency to assess temporal quality, while
aesthetics and imaging quality metrics are used to evaluate the
visual quality of each frame.

Method Background Aesthetic Imaging
Consistency Quality Quality

I2VGen-XL [53] 90.93% 40.14% 58.35%
SVD [2] 93.17% 42.38% 59.61%
AnimateAnything [11] 93.89% 46.04% 61.69%
CogVideoX-5B [52] 94.91% 45.88% 61.99%
MotionStone 95.76% 46.78% 62.29%

network as conditions. Due to the distinct meanings, these
two motion types can’t be directly compared and combined
in the same way, so we propose a decoupled injection
approach during the diffusion model training.

Specifically, we use two separate MLPs to learn high-
dimensional mappings for the predicted object and camera
motion vectors. These vectors are then concatenated and
added to t, allowing two conditions to remain disentangled,
and preventing ambiguity in condition injection. As shown
in Figure 3, the input motion intensities are first mapped to
high-dimensional vectors, similar to t, and then processed
through two MLPs with the same channel dimensions,
respectively. The outputs are concatenated and added to t,
collectively modulating the scaling coefficients.

4. Experiments
4.1. Implementation Details
Training Configurations. We implement MotionStone
using the CogVideoX [52] framework. Our model training
is conducted on 100,000 high-quality videos collected by
ourselves, utilizing 8 A100 GPUs with batch size 16. The
training is performed using Supervised Fine-Tuning (SFT).
For each training video, we sample 49 frames and apply
center cropping and resizing to standardize their resolution
to 480 × 720. We condition the Image-to-Video model
training on the first frame of each video alongside its
associated text prompt.
Evaluation Metrics. We conduct user studies to compare
our approach with previous methods. Please refer to the
appendix for detailed results. For quantitative analysis, we
use the WebVID validation set [1], where the first frame
and corresponding prompt serve as conditions to generate
videos. We employ specific metrics from VBench [20]
to evaluate the generated videos, using Background Con-
sistency to assess temporal quality, while aesthetics and
imaging quality metrics are used to evaluate the visual
quality of each frame.

4.2. Comparisons with Existing Alternatives
We compare MotionStone with several recent Image-
to-Video (I2V) methods. I2VGEN-XL [53] and Ani-
mateAnything [11] are classic I2V approaches that enable

Table 2. Ablation Study for proposed modules. Motion
Estimator (M), Decoupled injection strategy (D). SSIM and S
mean previous motion modeling methods: inter-frame SSIM [8]
and feature difference [11] respectively.

Method Background Aesthetic Imaging
Consistency Quality Quality

MotionStone w/o M 95.13% 45.61% 60.15%
MotionStone w/ S 94.97% 46.13% 60.73%
MotionStone w/ SSIM 92.99% 45.72% 54.75%
MotionStone w/o D 94.03% 46.27% 58.73%
MotionStone 95.76% 46.78% 62.29%

Table 3. Comparison with previous motion intensity estimation
methods. We calculate and compare object and camera motion
scores for each video pair, then validate these predictions against
manually annotated ground truth. Correct predictions score 1
point. Evaluation is conducted on the validation set of the video
pair dataset introduced in Sec. 3.3.

Method Motion Estimation Accuracy

SSIM 44.56%
Ours 72.80%

video generation conditioned on a given image and text.
AnimateAnything also supports coarse control over motion
intensity. SVD [2] is a widely used I2V model that
employs U-Net as its denoising network. Additionally,
CogVideoX [52] is an open-source video generation model
based on the Diffusion Transformer.
Quantitative Results. We conduct quantitative experi-
ments using WebVID [22] validation dataset. Specific
metrics from VBench [20] are selected to evaluate the
experimental results. Among these, the Background Con-
sistency metric from the CLIP Score [33] effectively re-
flects the generative quality in the temporal dimension of
video. Meanwhile, Aesthetic Quality and Imaging Quality
respectively assess the aesthetic appeal and the quality
of each individual frame in the generated video. It is
important to note that we do not utilize the prompt suite
from VBench; instead, we only employ their evaluation
procedures and models. As shown in Table 1, compared
to U-Net-based generative models like SVD, I2VGEN-
XL, and AnimateAnything, our approach demonstrates
significant improvements in both temporal consistency and
visual quality of the generated videos. Even relative to our
baseline, CogVideoX, our method achieves noticeable en-
hancements. This is largely due to our model’s integration
of motion intensity prediction and decoupled conditional
injection, which effectively reduces the ambiguity between
the motion described in text prompts and the actual motion
intensity in the generated videos. This also demonstrates
that precise motion intensity control signals can help video
models converge more effectively.
Qualitative Analysis. In Figure 4, we select a set of repre-
sentative samples to qualitatively compare MotionStone
with I2VGEN-XL [53], SVD [2], AnimateAnything [11],
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Reference Image Camera Motion Intensity Level: 2

Reference Image Camera Motion Intensity Level: 5

Reference Image Camera Motion Intensity Level: 8

Reference Image Camera Motion Intensity Level: 2

Camera Motion Intensity Level: 5

Camera Motion Intensity Level: 8

“Camera pans right. A turtle is swimming.”
“Camera zooms in. A warm campfire burning brightly at night, 
with flames flickering and sparks flying upward into the dark sky.”

Reference Image

Reference Image

Figure 5. Illustrations of camera motion intensity guidance. We present two common camera movements: Zoom and Pan. Since
the camera movement often impacts object motion in scenes with moving subjects, we fix the object motion intensity at 5 to isolate and
highlight the effect of varying camera motion intensity. The camera movement becomes significant when the score increases.

Reference Image Object Motion Intensity Level: 2

Object Motion Intensity Level: 5

Object Motion Intensity Level: 8

Reference Image Object Motion Intensity Level: 2

Reference Image Object Motion Intensity Level: 5

Reference Image Object Motion Intensity Level: 8

Reference Image

Reference Image

“Wind blows the tree.” “A teddy bear is dancing in the snow.”

Figure 6. Illustrations of object motion intensity guidance. To emphasize control over object motion intensity and speed, we exclude
camera motion prompts from the text and set the camera motion intensity to its minimum value of 1 while varying the object motion
intensity. As the given object motion intensity increases, the generated video reflects a corresponding increase in object motion intensity.

and CogVideoX [52]. We select cases involving people,
animals, natural scenes, and fast-moving scenarios. As can
be seen, the identity of the subject in the videos gener-
ated by I2VGEN-XL is not well-preserved, and there are
occasional discrepancies between the motion and the text
prompt. SVD also appears to face issues with preserving
the identity of objects, and in fast-moving scenarios, the
generated video exhibits limited motion intensity (e.g., the
bicycle remains stationary). Although the video frames
generated by AnimateAnything are well-aligned with the
input image, in most scenes, the generated video is almost
static, and there are occasional interruptions from other
objects that interfere with the main subject. Compared to
previous methods, CogVideoX shows some improvements
in motion continuity. However, it occasionally fails to align
with the content of the input image and exhibits limited
motion. In Example 3, it generates content that does not
adhere to the physical rules of the real world.

In contrast, MotionStone is capable of generating
videos that align well with both the input image and text.
The generated videos exhibit substantial camera and object
motion, producing visually appealing shots and motion that
adhere to the laws of the physical world.

4.3. Ablation Studies

In this section, we provide detailed analyses of proposed
modules. We begin with quantitative experiments on all of
the proposed modules, followed by a qualitative analysis of
the controllability of object and camera motion intensities.
Finally, we evaluate the motion magnitude between video
pairs in the validation set. Specifically, we compare the
accuracy of our motion estimator against SSIM to verify its
predictive effectiveness and its ability to decouple motion.
Motion Estimator. To validate the overall effectiveness of
the proposed motion estimator, we compare the quantitative
performance of MotionStone trained with fixed motion
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intensity (set to a default value of 5) versus MotionStone
trained with motion intensities estimated by the motion
estimator. The experiments are conducted on the WebVID
validation set. As shown in Table 2, the quality of videos
generated by MotionStone without the motion estimator
(MotionStone w/o M) shows a noticeable decline. This
is due to the variability in object and camera motion within
the training data, using a fixed intensity value confuses the
model’s understanding of video motion dynamics.
Decoupled Motion Condition Injection. To quantita-
tively demonstrate the effectiveness of the proposed de-
coupled injection method, we compare the performance
of MotionStone trained with decoupled versus non-
decoupled motion intensity injection. In the non-decoupled
injection approach, object and camera motion are not
specifically separated along feature channels but are instead
mixed and injected together. As shown in Table 2, the per-
formance of MotionStone with non-decoupled injection
(MotionStone w/o D) is inferior to that of the decou-
pled injection approach. This is primarily because object
and camera motion occur in different spatial dimensions;
mixing them together obscures their distinct contributions,
making it challenging for the model to discern each type of
motion, thus complicating the training process.
Comparison with Previous Motion Intensity Estimation
Methods. We further compare our method with previous
methods for modeling motion intensity, which uses inter-
frame SSIM [8] (MotionStone w/ SSIM) or feature
difference [11] (MotionStone w/ S). Models are trained
following these methods; however, since neither approach
can decouple object and camera motion, we use a single
motion intensity guidance to train the model. As shown
in Table 2, both methods exhibit varying degrees of per-
formance decline. This is because neither SSIM nor inter-
frame feature difference aligns well with human perception
of video motion intensity. Additionally, both methods
fail to decouple complex video motion dynamics, instead
modeling the motion intensity of the entire scene as a
coarse, unified value, which leads to inaccurate estimations.

We further evaluate the trained motion estimator and
the SSIM-based motion intensity estimation method on the
validation set of the manually constructed video pair dataset
introduced in Sec. 3.3. Since SSIM cannot decouple object
and camera motion, we use its predicted overall motion
intensity as a proxy for both object and camera motion
intensities. We calculate the object and camera motion
scores for both videos in a video pair and compare their
relative magnitudes. The obtained comparison is then com-
pared with the manually annotated ground truth (GT). If the
predicted object or camera motion relationship is correct, it
is scored as 1 point. The final motion intensity relationship
prediction accuracy is calculated using this method, as
shown in Table 3. Our motion estimator achieves excellent

accuracy in predicting motion relationships, surpassing
SSIM-based method by 28%. This demonstrates that the
trained motion estimator effectively decouples object and
camera motion in videos.
Motion Intensity Estimation. As demonstrated in Sec. 3.3,
we represent the intensity of object and camera motion
in a video as a score, reflecting the magnitude and speed
of both object and camera movements in the video. We
perform ablation analysis of camera and object motion
intensities in Figure 5 and Figure 6, respectively. In
Figure 5, we control for camera motion and explore the
impact of intensity control on two representative types
of camera movements: zoom and pan. Since camera
movement often influences object motion in scenes with
moving subjects, we fix the object motion intensity at 5
to highlight the effect of controlling camera movement by
varying its intensity level. From the left set of images,
we observe that when the camera motion intensity level
is set to 2, the rightward pan of the camera is limited.
As the motion intensity level increases, the amplitude of
the rightward pan significantly grows, resulting in a more
substantial shift in perspective. For the images on the right,
as the camera motion intensity level increases, the degree of
camera zoom-in also increases. Figure 5 demonstrates that
MotionStone while maintaining the intensity and speed
of object motion, is capable of customizing the intensity
and speed of camera motion. In Figure 6, to highlight
the control over object motion intensity and speed, we do
not include camera motion prompts in the text and set the
camera motion intensity level to the minimum value of 1,
while varying the object motion intensity level. From the
two sets of images, it is clear that as the given object motion
intensity level increases, the speed and intensity of object
motion in the generated video both become faster and larger.

5. Conclusion
In this work, we propose MotionStone, a general image-
to-video (I2V) generation framework that enables decou-
pled modeling and control of video motion. To achieve
this, we train a dedicated motion estimator that directly
predicts object and camera motion intensities in line with
human perception. To address the challenge that human
annotators cannot directly label absolute motion intensities,
we develop a novel annotation method for video pairs
specifically for training the motion estimator. We design
a motion estimator with a backbone for video motion
representation and disentangled heads to predict object and
camera motion, trained using a contrastive learning strategy.
Finally, we inject the predicted motion intensities into a
diffusion model, thereby improving training convergence
and user customization ability. This entire pipeline demon-
strates impressive performance across diverse domains and
task instructions.

8



References
[1] Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisser-

man. Frozen in time: A joint video and image encoder
for end-to-end retrieval. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 1728–
1738, 2021. 6

[2] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel
Mendelevitch, Maciej Kilian, Dominik Lorenz, Yam Levi,
Zion English, Vikram Voleti, Adam Letts, et al. Stable video
diffusion: Scaling latent video diffusion models to large
datasets. arXiv preprint arXiv:2311.15127, 2023. 2, 5, 6

[3] Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dock-
horn, Seung Wook Kim, Sanja Fidler, and Karsten Kreis.
Align your latents: High-resolution video synthesis with
latent diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 22563–22575, 2023. 3

[4] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
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MotionStone: Decoupled Motion Intensity Modulation with Diffusion
Transformer for Image-to-Video Generation

Supplementary Material

A. Implementation Details

We supplement more details of the training of motion
estimator. For training the motion estimator, we utilize 8
A100 GPUs with batch size 64. The learning rate is set
to 5 × 10−6. To align with the training configuration of
MotionStone, input videos are cropped to a resolution of
480× 720 and sampled to 49 frames. The motion estimator
is trained for 10,000 steps using the Adam optimizer with
β1 = 0.9 and β2 = 0.999. We set the weight of regression
loss λ to 0.1.

B. Details on the Training Data for Motion
Estimator

In this section, we provide more details on the training
data for the motion estimator. We ask 15 annotators to
participate in this annotation process. The annotators are
asked to label video pairs from several aspects: First, they
are asked to determine whether the two videos in a pair
contain a moving object. A video is considered to have
a moving object only if it features a foreground object in
motion. Meanwhile, camera motion focuses on the global
motion in the scene. If a video in the pair contains a
moving object, it is labeled as 1; otherwise, it is labeled
as 0. Note that comparisons of object motion between the
two videos are only made when at least one video in the pair
features a moving object. Next, annotators are tasked with
labeling the relative magnitude of the object and camera
motion in each video pair. If both videos contain object or
camera motion, the corresponding item is annotated based
on the annotators’ subjective judgment. If only one video
in the pair exhibits object or camera motion, the video with
motion is considered significantly greater in the respective
category. Specifically, we define the annotations as follows:
if the first video shows significantly greater camera or object
motion than the second one, it is labeled as 2; if it is
only slightly greater, it is labeled as 1. Conversely, if the
first video shows significantly or slightly less motion, it is
labeled as -2 or -1, respectively. If neither video exhibits
object or camera motion, the corresponding item is labeled
as 0. During the training process using contrastive learning,
this label is employed to amplify the motion differences
between two videos. If a specific motion in the first
video is significantly greater than that in the second, the
corresponding loss is set to twice that of cases with a smaller
difference.

After completing one round of annotation, we conduct

a sampling check on 5,000 video pairs, reviewing 20% of
them. The investigation achieves an accuracy rate of 95%,
meeting the annotation standards. This demonstrates that
the annotated data aligns well with human perception of the
relative magnitude of object and camera motion in videos.

C. User Study on Comparisons with Existing
Alternatives

Since the metrics in VBench [20] cannot fully evaluate
the performance of the model, we conduct user studies.
We ask 10 annotators to participate in this process. To
ensure the generalization of the evaluation, we select a wide
variety of real and animated images, including elements
such as people, animals, camera movement, plants, and
natural landscapes. Twenty image-text prompts are se-
lected and processed by each compared method, including
MotionStone, generating a total of 100 video clips.
Each participant is presented with two videos generated
by different methods for the same prompts and asked to
choose the one that performed better in four aspects: Text
Consistency evaluates if the motion and content follow
the text prompt. Image Consistency assesses the ability
to preserve the identity of the reference image. Content
Quality determines the overall quality of video generation,
including visual appeal, definition, and the logical coher-
ence of the generated content. Motion Quality evaluates
the plausibility and richness of the motion. The pairwise
comparison is repeated for all combinations of videos,
resulting in C5

2 comparisons.
As shown in Tab. 4, our method demonstrates superior

performance, particularly in terms of Text Consistency,
Content Quality and Motion Quality. This highlights the
effectiveness of our approach in text-based motion control
and the generation of videos with content and motion that
align more closely with human perception.

D. Evaluation Metrics

We select several metrics from VBench [20] for quantitative
evaluation experiments, including Background Consistency,
Aesthetic Quality, Imaging Quality, Subject Consistency,
Motion Smoothness, Dynamic Degree and Temporal Flick-
ering. It is important to note that, we utilize only its models
and evaluation processes, excluding its prompt suite. Con-
sequently, some metrics that strictly require the use of the
prompt suite are omitted. The detailed information on each
metric is introduced as follows.
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Table 4. Results of user study. The best results for each column are bold. We ask annotators to rate videos based on four aspects: Text
Consistency, which assesses how well the motion and content adhere to the textual descriptions; Image Consistency, which evaluates the
ability to preserve the identity of the reference image; Content Quality, which focuses on inter-frame coherence and definition; and Motion
Quality, which measures the plausibility and richness of the motion.

Method I2VGEN-XL SVD AnimateAnything CogVideoX-5B MotionStone
Text Consistency ↑ 32.50% 39.38% 25.00% 63.13% 90%
Image Consistency ↑ 27.50% 36.88% 56.25% 62.50% 66.88%
Content Quality ↑ 31.25% 45.63% 33.13% 63.13% 76.88%
Motion Quality ↑ 26.25% 48.13% 39.38% 61.25% 75.00%
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“Camera zooms out. A penguin is dancing.” Object Motion Intensity: 4 ,  Camera Motion Intensity: 7Reference Image

Figure 7. Qualitative ablation for proposed modules. Using inter-frame SSIM [8] and feature difference [11] (MotionStone w/ SSIM
and MotionStone w/ S) causes varying degrees of unnatural background motion (In the first row, the snow block in the upper left corner
of the third column appears. In the second row, background motion blur is observed.) and does not follow the camera motion described in
the text prompt. Omitting the proposed motion estimator (MotionStone w/o M) and the decoupled injection method (MotionStone
w/o D) results in issues such as generating static video and confusion or overlap between camera motion and object motion control,
respectively. These approaches also fail to follow the camera motion described in the text prompt successfully.

Background Consistency. This metric measures the tem-
poral consistency of the background scenes by calculating
CLIP [33] feature similarity across frames.

Aesthetic Quality. This metric assesses the human-
perceived artistic and aesthetic value of each video frame
utilizing the LAION aesthetic predictor. This tool captures
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various aesthetic dimensions, including composition, color
richness and harmony, photorealism, naturalness, and the
artistic quality of the video frames.
Imaging Quality. Imaging quality pertains to distortions
such as over-exposure, noise, and blur observed in the
generated frames. This metric measures this using the
MUSIQ [21] image quality predictor, which is trained on
the SPAQ [13] dataset.
Subject Consistency. This metric calculates the DINO [4]
feature similarity across frames to evaluate the consistency
of a subject’s appearance throughout the video.
Motion Smoothness. Evaluating the smoothness of motion
in generated videos and its adherence to real-world physical
laws is crucial. To assess this, this metric leverages motion
priors from the video frame interpolation model [23].
Dynamic Degree. As a completely static video might
perform well in the previously mentioned temporal quality
metrics, it is essential to assess the level of dynamics (i.e.,
the presence of significant motions) in the generated videos.
To achieve this, this metric uses RAFT [41] to estimate the
extent of dynamics in the synthesized outputs.
Temporal Flickering. Generated videos may display
imperfect temporal consistency, particularly in local and
high-frequency details. To quantify this, this metric extracts
static frames and calculates the mean absolute difference
between them.

E. Limitation
Although MotionStone has made notable progress in
I2V generation and motion intensity control, it still faces
several limitations. First, MotionStone is built upon
CogVideoX, and due to constraints in memory and com-
putational resources, it can only generate videos of ap-
proximately 6 seconds in length at a specific resolution.
We believe that as the computational demands of foun-
dational video generation models decrease in the future,
MotionStone will be able to generate longer videos with
higher resolutions. Furthermore, with reduced computa-
tional resource requirements, it will be feasible to design
a larger motion estimator and leverage more extensive
training datasets to develop a more powerful model. The
enhanced motion estimator could better assist I2V genera-
tion, and we are confident that such advancements will lead
to superior performance.

F. More Experiments
In this section, we first present additional ablation studies,
including more detailed qualitative and quantitative exper-
iments, as well as an evaluation of the motion strength
error of our proposed motion estimator compared to pre-
vious motion intensity estimation methods. Subsequently,
we provide more specific quantitative comparison results.

Finally, we provide additional cases to showcase the gener-
ative capabilities of MotionStone.

F.1. More Ablations

More Quantitative and Qualitative Results. We first sup-
plement additional quantitative metrics on VBench [20] to
demonstrate the superiority of MotionStone. As shown
in Tab. 5, benefiting from the support of the motion esti-
mator and the decoupled injection method, MotionStone
outperforms other motion intensity modulation approaches
and models without these strategies in terms of gener-
ated quality, inter-frame consistency of subjects and back-
grounds, motion magnitude, and temporal quality.

Furthermore, we conduct qualitative ablation studies.
As shown in Fig. 7, we generate videos using prompts
containing both camera and object motions. We observe
that MotionStone w/ S and MotionStone w/ SSIM
fail to follow the camera motion described in the text
prompt. Additionally, MotionStone w/ S exhibits
unnatural motion in background objects (e.g., the snow
block in the upper left corner of the third column), while
MotionStone w/ SSIM displays motion blur issues.
These problems are common to non-decoupled motion
intensity modulation methods, as they inadvertently cause
undesirable background motion while animating the sub-
ject. We observe that the MotionStone w/o M model,
which does not utilize the motion estimator, generates static
frames without responding to the specified motion inten-
sity. This issue arises because, during training, the model
does not receive varying signals corresponding to different
motion intensities but rather a constant signal. As a result,
the model fails to interpret the provided intensity control
signals and is unable to model motion intensity accordingly.
MotionStone w/o D exhibits excessive motion, affecting
both the object and the camera motion. Moreover, it fails
to follow the text prompt to perform a zoom-out motion,
instead generating an opposite camera motion. This issue
stems from the lack of decoupled injection of camera and
object motion intensity signals. Without clear separation,
the model struggles to associate the signals with the specific
motion components they are meant to control, leading to
unpredictable overlap or confusion. Consequently, the
generated video lacks coherent and orderly control. In
contrast, MotionStone accurately follows the object and
camera motion descriptions provided in the text prompt and
generates visually appealing and motion-consistent videos
based on the specified motion intensities. This demonstrates
the effectiveness of the proposed modules.
Motion Intensity Guidance. We provide an additional
example to demonstrate the decoupled control capabilities
of MotionStone for object motion and camera motion
intensities. As shown in Fig. 8, in the first two rows, the
text prompt does not specify camera motion, so the camera
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Table 5. More quantitative ablation results on VBench [20]. The best results for each column are bold. Motion Estimator (M),
Decoupled injection strategy (D). SSIM and S mean previous motion modeling methods: inter-frame SSIM [8] and feature difference [11]
respectively.

Method Background Aesthetic Imaging Subject Motion Dynamic Temporal
Consistency Quality Quality Consistency Smoothness Degree Flickering

MotionStone w/o M 95.13% 45.61% 60.15% 93.34% 98.51% 43% 96.51%
MotionStone w/o S 94.97% 46.13% 60.73% 92.99% 98.48% 42% 96.42%
MotionStone w/ SSIM 92.99% 45.72% 54.75% 88.96% 97.51% 47% 93.54%
MotionStone w/o D 94.03% 46.27% 58.73% 92.54% 97.59% 48% 95.20%
MotionStone 95.76% 46.78% 62.29% 94.56% 98.96% 48% 97.41%

Reference Image

Reference Image

Reference Image

Reference Image

Object Motion Intensity: 4 ,  Camera Motion Intensity: 3

Object Motion Intensity: 4 ,  Camera Motion Intensity: 9

Object Motion Intensity: 7 

Object Motion Intensity: 1
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Figure 8. Illustrations of object and camera motion intensity guidance. MotionStone can decouple and independently control
camera motion and object motion intensities. When either camera motion or object motion is increased, the generated videos exhibit
excellent adherence to the respective motion changes.

motion intensity is set to the minimum. By increasing the
control of object motion intensity, it is evident that the
camel moves faster. In contrast, in the last two rows, we
introduce camera motion descriptions in the text prompt
and adjust the camera motion intensity while reducing the
control of object motion intensity. It is observable that as
the object motion intensity decreases from 7 to 4, the camel

slows down. Meanwhile, as the camera motion intensity
increases from 3 to 9, the camera pans to the right more
quickly. These examples strongly demonstrate the ability of
the MotionStone to decouple and independently control
camera and object motions in generated videos.

Furthermore, we compare the performance of different
motion intensity guidance methods. Using predefined mo-
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Reference Image

Reference Image

Reference Image

Reference Image

Reference Image “Pouring water into the glass.”

“Mouse falls to the ground.”

“Bigfoot is walking through the woods.”

“Camera zooms in. A giant striped planet rotates.”

“A young woman adjusts her gaze and hand while holding a leafy branch.”

Figure 9. More cases generated by MotionStone. MotionStone demonstrates impressive generation quality across various
scenarios. Here, the default object motion intensity or camera motion intensity (if applicable) is set to 5.

Table 6. Ablation on motion intensity guidance. Compared
to previous methods, our motion estimator achieves more precise
control over motion intensity, generating videos with camera or
object motion that better aligns with user requirements.

Method Motion Strength Error

Feature Difference (S) [11] 11.55
SSIM [8] 11.27

Ours 2.52

tion intensity values, we generate videos and subsequently
apply a motion estimator to obtain the corresponding mo-
tion intensities. The mean squared error (MSE) between the
generated video intensities and the input values is then cal-
culated. As shown in Tab. 6, the motion estimator proposed
in this work provides more stable motion guidance and
ensures that the motion intensities in the generated videos
align more closely with the user-specified values.
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Table 7. More quantitative comparison results on VBench [20]. The best results for each column are bold.

Method Background Aesthetic Imaging Subject Motion Dynamic Temporal
Consistency Quality Quality Consistency Smoothness Degree Flickering

I2VGen-XL [53] 90.93% 40.14% 58.35% 86.97% 97.02% 44% 95.24%
SVD [2] 93.17% 42.38% 59.61% 93.23% 97.39% 40% 94.70%
AnimateAnything [11] 93.89% 46.04% 61.69% 93.72% 97.58% 4% 95.48%
CogVideoX-5B [52] 94.91% 45.88% 61.99% 94.39% 98.76% 36% 96.73%
MotionStone 95.76% 46.78% 62.29% 94.56% 98.96% 48% 97.41%

F.2. More Results
We supplement additional quantitative comparison results
across more evaluation dimensions on VBench [20], as
shown in Tab. 7. MotionStone demonstrates superior
performance in terms of temporal quality and motion
magnitude of the generated videos compared to previous
methods.

We also provide additional examples generated by
MotionStone, as shown in Fig. 9. These include real
human figures, anime-style characters, animals, and natural
scenes. MotionStone demonstrates remarkable capabil-
ities in conjuring entirely new content out of thin air.

We provide the original video cases showcased in the
paper within the supplementary materials. The detailed
video effects can be found in the designated folder.
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